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CHAPTER 1

INTRODUCTION

1.1 Background

Whenever the propagation of a sound wave is obstructed by some
obstacle, part of the sound wave is deflected or disturbed. This
disturbance or interference gives rise to the phenomenon called
diffraction.

The problem of diffraction, where the interfering obstacle is
a semi-infinite half-plane, is a classical problem in the area of
wave propagation. Recently, because of environmental concerns,
there has been.interest in using barriers and enclosures as a means
of isolating noise from adjacent areas. Understanding the phenomenon
of diffraction is important, since the sound waves will diffract
around the barrier. Although, the geometry of the half-plane plays
a dominant role in creating the diffracted pressure, the nature of
the surface impedance also influences the behavior of the diffracted
pressure. By adjusting the surface impedance of the half-plane,

the diffracted pressure could be modified in some desirable fashion.

1.2 Review of Previous Investigations

Studies of diffraction have been extensively carried out in
the fields of acoustics and optics. Many related publications may
be easily found in the literature. This review is concerned specif-
ically with those papers that are related to the diffraction of a
wave by a half-plane and, in particular, an impedance covered half-

plane.
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Because of the geometry of the half-plane, the usual techniques
for solving boundary value problems do not apply. Consequently, in
order to solve the problem for sharp geometries like the half-plane,
other methods have had to be formulated. It was Sommerfeld [1,2) who
successfully used an integral expression to represent the scattered
pressure. With the pressure expressed in an integral form and a
concept of sources and image sources, he matched the conditions on
the surfaces of the half-plane. In Sommerfeld's classical work, he
was able to solve the problem only for the rather ideal boundary
conditions of a perfectly soft (pressure release) or a perfectly
hard (rigid) surface. Any impedance between those extremes could
not be accommodated by his more or less heuristic formulation of the
problem. Sommerfeld's solution accounts for the geometry of the
diffracting obstacle but is limited in the sense that it does not
account for arbitrary surface conditions.

After Sommerfeld, several researchers found a number of ways
to solve the problem of diffraction by a half-plane based on the so-
called Weiner-Hopf Technique. The Weiner-Hopf method is essentially
an extension of Fourier-Laplace transforms which results in a complex
variable equation that is analytic within a certain region. The
fundamental step in the Weiner-Hopf method is to determine two
functions, each of which satisfy a complex variable equation in
different halves of the complex plane but together satisfy the
equation in a proper overlapping region. The problem can bz reduced
to the task of splitting a complex function into two factors in such

a way that each factor contains specific singularities. A variation

s r—— — - —A g




of the Weiner-Hopf method is a dual integral technique employed by
Jones [3] and Clemmow [4]. In this method, two integral equations
are found that are valid in separate half-planes of the complex
plane. It is necessary to find a function that will satisfy each
integral equation in its respective half-space. Jones and Clemmow
applied the dual integral method to the specific problem of diffrac-
tion by a half-plane and found a solution exactly equivalent to
Sommerfeld's solution. Again, they only considered ideal boundary
conditions.

The Weiner-Hopf technique was successfully employed by Senior
[5]. He attempts a problem in which a semi-infinite metallic sheet
has some finite conductivity. The solution that he finds is exact
but the function resulting from the Weiner-Hopf analysis is in
integral form and cannot be easily computed.

Following Senior, Williams [6] extended the Weiner~Hopf technique
to a more general problem of the diffraction by a wedge., He reduced
the problem to the solution of an ordinary difference equation. This
difference equation was then solved by means of a double Gamma
function defined by Barmes [7]. If the wedge angle was of the form
p 7/q, where p and q are prime, and p is odd, a closed form solution
could then be found. By choosing proper values of p and q, a wedge
that is very close to a half-plane could be approximated. Rawlins
[8) used the Weiner-Hopf technique to solve the diffraction by a
half~plane with one side soft and the other side rigid. According
to Rawlins, a "perfectly absorbing" surface can be modeled by adding

the hard and soft surface solutions together and dividing by two.
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From this he concludes that the absorbing surface will attenuate the
diffracted pressure if it is on the illuminated surface

The case of a half-plane with an arbitrary surface impedance
has not been solved by the Weiner-Hopf technique. However, the
Russian physicist, Malyuzhinets [9,10,11] has approached the problem
by yet another method. Malyuzhinets used a Fourier Transform
approach to find a single spectral function for the whole range of
integration. The function is found to be a product of four integral
functions that comprise the special functions derived by Malyuzhinets
to account for the arbitrary surface impedance. Malyuzhinets
demonstrates that each spectral function is a solution of a differ-
ence equation. Malyuzhinets and his colleagues have also applied
their technique to a more general class of problem where the dif-
fracting obstacle is an impedance covered wedge.

In most cases, the diffraction problem was solved considering
an incident plane wave. Redfearn [12] considers various kinds of
sources. Specifically, for a point source Redfearn discussed the
practical uses of a half plane as a noise barrier. Finally, Clemmow
[4]) discusses the diffraction of a line source by a half-plane,
where he derived the solution in terms of the Fresnel Integrals. A
good summary of the work accomplished in the area of diffraction by

edges and wedges is given by Pierce [13].
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CHAPTER 11

MATHEMATICAL FORMULATION FOR THE DIFFRACTION OF
ACOUSTIC WAVES BY AN IMPEDANCE COVERED HALF~PLANE

2.1 Statement of the Problem

In this study, the problem of diffraction, where the disturbing
obstacle is a half-plane, is considered. The acoustic impedance of
the upper and lower surfaces of the half-plane will have an effect
on the diffraction of a sound wave. Conventionally, this problem
is approached by considering only the ideal surface conditions of a
perfectly rigid or a perfectly soft half-plane. In this study,
however, the effect of more realistic surface conditions are con-
sidered. These surface conditions can account for an arbitrary
local reactance and an arbitrary absorption on both surfaces of the
half-plane. Specifically, this study aims to determine exactly how
the surface impedances on the two sides of a half-plane will affect
the diffraction of sound.

In addition to this, various kinds of acoustic sources can
produce the scund waves incident upon the half-plane. Subsequently,
this study also investigates the diffraction for a plane wave, a
line source, and a point source.

Often when dealing with the diffraction of a sound wave,
interest concentrates only on how the diffracted field appears when
an observer is located many wave lengths from the diffracting
obstacle. However, it is a goal of this study to also investigate

the diffraction when the observer distance from the edge may not
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necessarily be great, as well as when the observer distance does
become large.

A special case of diffraction results when the source and
observer are located at the same position. This is called back-
scattering. Results of backscattering for various surface and source
conditions are also to be analyzed.

In short, the goals of this study are to develop analytical
models and exact solutions that account for arbitrary realistic
surface conditions, source and observer locations, for the acoustic

diffraction and backscattering by a half-plane.

2.2 Assumptions

The problem that is modeled here is based upon the existence
of a semi-infinite thin plane. Needless to say, one cannot realize
such an edge physically.

Perhaps of more significance are the assumptions and restric-
tions that are made concerning the acoustical behavior of the
semi-infinite plane surfaces. For several reasons, the surfaces
are considered to have locally reacting impedances. This is chosen
in the first place because it represents many real accustic situations
reasonably well. Secondly, it can be handled mathematically by a
comparatively simple formulation.

What then is meant by a locally reacting surface? Suppose an
acoustic wave impinges on a surface. Some of the energy of the
acoustic wave could be reflected, some could be absorbed, and some

could be used to set the surface itself into motion. If the surface




itself is set into motion, it is possible, depending on the material
making up the surface, for that motion to propagate along the surface
For a locally reacting surface, this is not possible.

It may be possible for the surface to be set into motion by an
incident acoustic wave in such a way that each point on the surface
moves independently of all adjacent points. In other words, there
is no coupling of the motion of the neighboring points of the surface,
so consequently, no allowances are made for the propagation of a
wave along or through the surface. It is important to recognize
that this means there are no elastic waves propagating in the surface
nor are there any waves transmitting through the surface. However,
surface waves in the acoustic medium are accounted for in this
analysis.

The motion of the surface at a given point is determined by the
pressure of the acoustic wave at that point. It turns out that the
pressure is proportional to the component of velocity normal to the
surface. The motion of the acoustic fluid tangent to the surface
will not cause any motion in the surface. This is the true provided
the acoustic fluid is considered invisid or at least has negligible
viscosity. Thus, the ratio of the acoustic pressure at the surface
to the outward normal component of the velocity at the surface at
a given point is called the acoustic impedance of the surface at
that point. It is usually signified by Z = % . The half-plane is
considered to have different impedances on 1:: two surfaces which

will be denoted by Z+ and Z-, respectively.




In general, the acoustic impedance of the surface may be complex.
The imaginary part of the impedance corresponds to the reactive
component of the surface impedance. This means that the surface can
be locally idealized as consisting of a series of isoclated masses
and springs. The real part of the impedance physically represents
the acoustic energy that is absorbed by the surface.

In brief, the assumptions imposed to facilitate the mathematical
formulation are (i) a thin half-plane, and (ii) locally reacting

impedances on the surfaces.

2.3 Integral Representation

In order to have an exact solution to a diffraction problem, it
is necessary to satisfy three basic requirements. First, the solu-
tion must satisfy the wave equation. Second, the solution must
account for the boundary conditions on the surfaces of the diffracting
half-plane and be continuous throughout the physical space. Third,
the solution must correspond to the given type of excitation, be it
a plane wave, a line source, or a point source. If all these require-
ments are met, then the resulting solution must be unique to the
problem as it is posed. In this regard, the analytical method used
in this study exploits an integral representation that must satisfy
these requirements.

Since the Fourier Integral transforms are useful in the formu-
lation of the problem, they are introduced here. Define the Fourier

Transform pair as
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£(x) = ﬁf Fiy)e 1'* gy

(2.1)
and
iyx
F(y) = f(x)e dx . {2.2)
Consider now the wave equation for the pressure
R
Vp = —= =2 | (2.3)
2 2
& 1t

where c is the velocity of propagation of an acoustic wave in free

space. Assuming the pressure to be periodic in time as e‘wt

, then
Equation (2.3) becomes

vo+kip=o , (2.4)
where k = w/c.
Applying Fourier Transforms on Equation (2.4), one obtains
2_
L2+’ -vHp=0 (2.5)
dy
or
2—
dy

— - S————
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where

The solution to the differential equation in Equation (2.6) is

1By

P = A(Y)e (2.7)

The (+) or (=) sign in the exponent corresponds to the two possible
independent solutions of Equation (2.6). To choose the proper sign,
consider the physical situation. The pressure p is meant to
represent the diffraction from the edge. Consequently, the solution
must reflect the behavior of outgoing waves from the edge rather
than an incoming wave from infinity. The requirement for cutgoing
waves can be assured by using the plus sign (+) .or y<0, and the
minus sign (-) for y>0.

Taking the inverse transform of ; gives the following integral

representation,

]
+ L
p(x,y) = f A &YX gy (2.8)
-0
Since the integral representation in Equation (2.8) satisfies
the wave equation, p(x,y) is then chosen as a suitable representation

for the scattered pressure. Letting A = y/k then Equation (2.8)

becomes
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-0

A (2.9)

Another way to consider this integral representation is through
a more heuristic explanation of the physical meaning. The exponent
of the integrand can be regarded as waves propagating in all direc-
tions in the x,y plane. This part will satisfy the wave equation.
The function A(A) of the integrand can be regarded as a spectrum
function. This is to say that A(\) represents a weighting or
distribution of waves that will propagate in any given direction.
From this explanation, it is argued that, since the integral itself
is made up of a superposition of waves that individually satisfy
the wave equation, then, this superposition of waves in the form of
the integral will also satisfy the wave equation. Subsequently, the
integral in Equation (2.9) is often referred to as a spectrum of
plane waves.

A final step at arriving at an appropriate integral representa-
tion is to express the integral of Equation (2.9) in polar
coordinates. This is accomplished by adopting two transformations.

First, let

X = r cosd,
and

y = r sing . (2.10)

o —

- ———

-
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Next use the following change of variable for X:
A = cosa . (2.11)

Thus, the corresponding path of integration in the a-plane must
be computed.
Making use of Equations (2.10) and (2.11), the integral

expression may be expressed in polar coordinates as follows:

ohE ) o kJr Alcoss) sing e-ikr(cos¢ cosa * sind sina)dOL :

i ¢ (2.12)

with (+) for the upper half-plane when y>0, and (~) for the lower
half-plane when y<0, and where y is the path of integration. Letting
P(cosa) = k A(cosa) sina and using the appropriate identity in the

exponent, one arrives at the following integral representation:

p(r,¢) = P(cosa) e-ikt cos (¢za) da (2.13)
(=) upper half-plane
L (+) lower half-plane

In this form, it is easier to recognize that Equation (2.13)
represents an angular distribution of plane waves,

It is necessary to carefully investigate what occurs under the
change of variables chosen in Equation (2.11). Starting with the

equation for A:

A = cos(ar + 1 ai)
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and
Xr + i Ai = cosa coshui -1 sinho.1 pinar - (2.14)

where Xr and a, are the real parts of A and a and Ai and a, are the
imaginary parts of A and a. Equating the real and imaginary parts,

it follows that

A_ = cosa_ cosha (2.15)
r r

i

and

Ai = - sinha1 sinar 4 (2.16)

Due to the periodicity of cosar and sinar. the entire complex
A-plane will map into a strip of width 7 in the a-plane, and then
repeat itself in subsequent strips of width equal to 7.

To understand this, consider Ai negative, or the lower half of
the complex A-plane, then - sinhq; sina.r must be negative. This is
met

1) for ai< 0 and sinar< 0

if (2n-1)7 < o < 2nm
and
2) for a,> 0 and sinar> 0

< f

if 2nm 288 2n+l)m (2.17)
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I1f, on the other hand, ki is positive and thus represents the upper
half of the complex A-plane, then = sinhai sinur must also be

positive. Consequently, this condition is also satisfied:

1) for ai< 0 and sinur> 0

if 2nm < uri (2n+l)m
and

2) for ai> 0 and sinar< 0

1f (n-1)7 < o < 2nm . (2.18)
=

Using the conditions stated in Equatioms (2.17) and (2.18),
Figure 2.1 shows the mapping of the entire complex A-plane to a
multiplicity of strips in the complex a-plane.

Because the A-plane maps itself every 7 in the a-plane, it then
follows that the path of integration from - «® to + « in the A-plane
must likewise exhibit the same repetitive behavior. Considering the
expression for the real part of A in the Equation (2.15) to determine
the path for A from - = to + «, certain values for a and a, must be
chosen. Starting at - « and moving to + «» in the A-plane the
corresponding values for o and a, are indicated in Table 2.1. From

Table 2.1, it follows that the path of integraticn in the a-plane

can be made by picking any combination of values of o, and a.

i

L - ' ‘." . b’. - e '
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Table 2.1. The path of integration in the A-plane and the
Corresponding a-plane.

X -0 -1 -+ 0 ~» 1~ w

oi +o0 0 0 0 too
+

ur (n+l)m (n+l)™ Eil m nr nr

There is one last detail to consider before actually defining
the y-path. There is a negative sign introduced in the integral by
the change of variable in Equation (2.11). To compensate for that
minus sign, the path is simply followed in the opposite direction.
Taking this fact into account, and the values of ar and ui from
Table 2.1, the possible paths that may define the y-path in the
a-plane are shown in Figure 2.2. Any path that joins A = + » to
A = - » is an acceptable y-path for the integral representation of
Equation (2.13). It is now evident that there #s also a multiplicity
of y-paths.

Although all the Y-paths described in the previous section do
indeed represent a path from - o to + =, not all paths are suitable
choices. The reason lies in the behavior of the exponent in the

integrand of Equation (2.13). One requirement for this integral to

exist is that it muci converge. Since the integration is in the
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T 2m

Figure 2.2. The y-paths. Any path that connects the points A = -®
to A = +© in the direction of the arrows is a possible
Y-path.
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complex a-plane, one must be careful to insure that the y-path will
lie in a region where the exponent will insure convergence of the
integral. Thus one can find these regions in the a-plane by finding

where the real part of the exponent is negative as follows:
o d y
Re |-ikr {cos(¢-a ) cosha, * i sinha, sin(¢-a j} | < 0. (2.19)
e 0 o i i r'f |

Consider the case when y > 0, so one may choose the upper sign.
Then the real part of the exponential becomes krsinhaisin(¢-qr).
For a1< 0, then, sin(¢-ar) > 0 which implies

¢+ @-ra <o+ 2

For ai> 0, then, sin(¢-ar) < 0, so that

¢+ 2. m<a<¢+ (2:+l)r
S

For any arbitrary angle ¢ in the upper half-plane, the regions of
convergence with a suitable y-path are shown in Figure 2.3. The
regions of convergence are of width m and also exhibit repetitive
behavior.

The choice of the y-path also will be sufficient to satisfy
the Sommerfeld Radiation Condition. For the two-dimensional case

of plane wave radiation, this condition is

= — e —————————
e : - o ——
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lim r/"r" %2 + ikp + 0 (2.20)
r*e r
Substituting the expression for the scattered pressure into the

Sommerfeld Radiation Condition yields

lim Vr []P(cosa) (l-cos(¢Fa)) e_ikr cos(¢7a) d(;] + 0

r-»oo
{2.21)
Again, this limit can be satisfied if the y-path lies in a region
where the exponential decay allows convergence as r approaches
infinity. Thus, the Sommerfeld Condition is satisfied by the proper

choice of y-path.

2.4 Formulation of the Integral Equations for an Incident Plane Wave

The preceding section shows that an integral representation for
the scattered pressure does comply with one of the basic requirements
for a solution. Specifically, it satisfies the homogeneous wave
equation and the Sommerfeld Radiation condition through the choice
of y-path. In this section, the details of applying this representa-
tion to the diffraction of the half-plane with impedance boundary
conditions will be worked out.

The diffracting obstacle is the half-plane defined by x < o,

y = o and - » < z < + », The integral representation to be used is
expressed in terms of polar coordinates so one measures angles from
the positive x-axis. Thus, the upper surface of the half-plane is

located at an angle ¢ = + 1, while the lower surface is located at

. T - — ...».-..w...-——-." A - —————
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an angle ¢ = - 7. An incident plane wave can be represented as

follows:

eikr cos(¢-¢°)

- (2.22)

el
The angle ¢o’ also measured from the positive x-axis, will denote
the angle of incidence. Finally, the upper and lower surfaces have
impedances of Z+ and 2, respectively. The geometry for the
half-plane i¢ depicted in Figure 2.4.

The surface impedance is the ratio of the total pressure at
the surface to the outward normal component of the total velocity
at the surface. The transverse component of velocity may be ex-

pressed in terms of the pressure p by

3
Y. -—i— . i—g
¢ kpe r 3¢ (2.23)

It follows that the transverse component of the velocity for the

incident plane wave is given by

Z S ikrcos (¢-¢ )
Y16 = Tper 3¢ E’oe "] '

BRI gkl
pc '

(2.24)

and also the velocity for the diffracted pressure is given by




R ——— e o

OBSERVER (r,¢)

+m,z*

22

SOURCE (¢,)

-m,z

Figure 2.4.

Geometry for the impedance covered half-plane.
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]
3 0 -ikrcos (¢p5a) L
v¢ vl [L P(cosa) e dJ.J 4

= ‘jﬁ - El%ﬁfigl P(cosa) e-ikrcos(@:u) do . (2.25)
Y

The following boundary conditions at the upper and lower faces of

the half~plane must be satisfied,

P PP
tot i &
v 5 (v,+v) L (2.26)
tot i
or
o
BRIt (2.27)

Using the expressions found in Equations (2.13), (2.22) (2.23) and
(2.24) for the pressures and velocities, and from the boundary
condition of Equation (2.27), one can determine specific relationships
that satisfy the boundary conditions. The boundary condition for

the upper surface at ¢ = T becomes:

-{- P(cosa)eikrcosada+poe—ikrcos¢o
¥

+
" P.z sind  _
- -2 sinaP(cosa)eikrcosada+ < 9 e ikrcos¢o (2.28)
pc pc
Y

Ay ———————— .,

SE—
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A similar expression for the lower surface at ¢ = - 7 is

Jf P(cosu)eikrcos“du A poe-ikrcos¢o

Y
z ikrc P 2 -ikrcos¢
b sinaP (cosa)e DL - - sin@oe & (2.29)
&
Let
+ B
sinf = T
z
and
sing” = ££ | (2.30)
z

where 6+ and 6 are known as Brewster angles. These angles have an
impertant physical significance There will be no reflection of a
plane wave from an infinite plane if the angle of incidence of the
plane wave is equal to the Brewster angle. In short, it is the
angle of no reflection.

Using the relationships in Equation (2.30), Equations (2.28)

and (2.29) may be rewritten as follows:

‘{ﬂP(cosa)(sin6++sina)eikrc°8ada - - po(sin6+-sin60)e-ikrc°s¢°

v (2.31)
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and
‘fﬁP(cosa)(sinO—-sina)eikrcosudu = - po(sinw_+sin®o)e—ikrcos¢°
Y (2.32)
Equations (2.31) and (2.32) represent two integral equations that
satisfy the impedance boundary conditions.

It is necessary that the integral representations for the
pressure and the velocity be continuous in the physical space. There
is a change in sign in the exponent of the integral representation
as one crosses from the upper half-plane to the lower half-plane.

To guarantee continuity, the pressure and velocity in the upper
region, y > 0, and the pressure and velocity in the lower region,

y < 0, must be equal where the two regions are joined; namely, at

¢ = 0°. The two regions are not joined together at T or -7 because
the half-plane physically separates them. Checking the continuity

of the pressure at ¢ = 0°, it follows from Equations (2.13) and (2 22)

that

~jﬁ P(cosa)e_ikrcosada 3 poeikrcos¢o

Y

- Jf P(cosa)e K¥SO804, 4 poeik‘°°s¢° . (2.33)
£

This equation implies that the pressure is continuous. However, for

the velocity at ¢ = 0 one finds from Equations (2.24) and (2. 25) that

e e —————
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p eikrcos®°
‘f‘ _ P(cosa)sina e-ikrcosudu 5 0
i i

e _ ; p_sind :
.‘/” P(cosa)sina H ikrcos\xdOl - 0 eikrcoawo , (2.34)
pc pc
Y

which, when simplified, becomes:

j P(cosa)sina e 1KFS08%, -f—P(coscx)sinu o Throomd;, (2.35)
f Y

The three integral Equations (2.31), (2.32) and (2.35) are a
set of integral equations that satisfy all the requirements for a
solution to this diffraction problem. Specifically, these equations
satisfy the wave equation and the impedance boundary conditions for
an incident plane wave. To solve the problem one must determine
some function P(cosa), still unkonwn, that will satisfy all of these

integral equations.

2.5 The Solution of the Integral Equations for Plane Wave Incidence

Solving for the function P(cosa) is undoubtedly the most onerous
detail of this study. One attempts to construct the unknown function
P(cosa) by considering functions with properties that are sufficient
to satisfy each of the integral equations.

Toward this end, one seeks to close some Y-path within a region
of convergence and then evoke the Cauchy Integral Theorem to determine
the nature of P(cosa). If the Cauchy Integral Theorem is to apply,

then certain restrictions are subsequently imposed upon the functional

T P— — -———-W . | o w mA——n S
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behavior of P(cosa). From these restrictions one deduces a functional
form for P(cosa). If this procedure can be accomplished, one has a
solution to the diffraction problem.

To initiate this procedure, one must specify a y-path and the
regions of convergence through which the y-path may be closed
Starting with the integral Equations (2.31) and (2.32) corresponding
to the boundary conditions at ¢ = *7, and recalling the earlier
section defining the regions of convergence in Equations (2.21) and
(2.22), it follows that these regions are

for a, < 0

i

2nm < @ < (2s¢:1)7w ,

and for Ji >0

(2n-1)m > b 2am .

Figure 2.5 shows representative y-paths and how they may be closed.
For example, one such path originates at -iw, travels to 0, then to
T and terminates at T-iw. It is then closed at infinity along the
line from T-iw to -iw. In order to close the path in this manner,
it will be convenient if the integral along the part of the path at
infinity is zero. For this condition to be valid, certain restric-
tions on the behavior of the function P(cosa) at infinity must be
imposed. In particular, this condition maintains that the absolute
value of P(cosa) must be bounded at infinity. The condition on

P(cosa) is

7 SRS g —— e g —




28

< _,__’j(_é as a, * @ (2.36)
T (cosa) 1

P (cosa)

and for & > 0.

Now consider, for example, the integral Equation (2.31):

ikrcosa -ikrcosa

jn P(cosu)(sin0++sina)e

+
da = p (sinf -sind )e
Y o o

If the y-path is closed in the manner described, one finds that the

integral around a closed path equals the value of the right hand

side of the equation which is po(sin0+—sin®o)e-iktcos®°.

By virtue
of the Cauchy Integral Formula, this means that there must be simple
Po g
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